ggplot2 - Linear regression different using R plot() and qplot() -
if create scatterplot using plot()
lm(x~y)
on data intercept @ 500 , when observe qplot
on same data stat_smooth(method=lm)
, intercept @ 1000 on y axis. although slope looks visually similar on simple plot()
. hope makes sense. cannot understand why difference. full functions given below. appreciated.
plot()
:
plot (my[[12]],my[[8]]) abline(lm(my[[12]]~my[[8]]),col="red")
qplot()
:
mygg<-qplot(x=my[[12]],y=my[[8]]) # pretty scatterplot mygg<-mygg + stat_smooth(fullrange=true,method="lm")
it seems me variables in regressions not correspond. in lm
variable my[[12]]
dependent, in qplot
variant independent one. using lm(my[[8]]~my[[12]]
should make equivalent.
it common mistake mix variables when using plot
, lm
. note axis right, order of variables changes in lm
compared plot
.
x <- rnorm(100) y <- rnorm(100) plot(x,y) abline(lm(y ~x))
to make less confusing might use formula interface in plot
well.
plot(y ~ x) abline(lm(y ~x))
Comments
Post a Comment